Incorporating Effects of Process, Voltage, and Temperature Variation in BTI Model for Circuit Design

نویسندگان

  • Shreyas Kumar Krishnappa
  • Harwinder Singh
  • Hamid Mahmoodi
چکیده

Bias Temperature Instability (BTI) is a major reliability issue in Nano-scale CMOS circuits. BTI effect results in the threshold voltage increase of MOS devices over time. Given the Process, Voltage, and Temperature (PVT) dependence of BTI effect, and the significant amount of PVT variations in Nano-scale CMOS, we propose a method of combining the effects of PVT variations and the BTI effect for circuit analysis. We investigate the PVT dependence of BTI effect on a ring oscillator circuit as a test bench for logic circuits and an SRAM cell as a test bench for memory circuits. The results show that low threshold voltage circuits at high temperature experiences the worst impact of aging effects. However, the bias dependence of the impact of aging effects on circuits may vary from circuit to circuit and from metric to metric depending how the sensitivity of the circuit to BTI threshold voltage shift at different biasing changes. KeywordsAging effects; Nano-scale CMOS; Process variations; Voltage variations; Temperature variations

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardwar Trojan classification and implementation and offer a new detection approach

A hardware attack that enables the attacker to alter the main circuit with malicious hardware during either design or the fabrication process is studied and analyzed. This attack, known as the hardware Trojan, has different objectives such as destroying hardware, changing circuit characteristics or extracting sensitive information. So hardware Trojan detection and hardware security are critical...

متن کامل

Power Supply and Current Modulation Circuits for Semiconductor Lasers

Design and construction of a stable current supply with protection circuits are described. The reported circuit provides a high-stable and high-level current variable from 0.5-1.2 A with the protect ion circuits to prevent over load current, voltage and off-range temperature operation. A detailed analysis of the circuit parameters is given and the time behaviors of the load voltage/current and ...

متن کامل

Effect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells

Effects of temperature on electrical parameters of polysilicon solar cells, fabricated using the phosphorous spin-on diffusion technique, have been studied. The current density–voltagecharacteristics of polycrystalline silicon solar cells were measured in dark at different temperaturelevels. For this purpose, a diode equivalent model was used to obtain saturation current densi...

متن کامل

12th Int'l Symposium on Quality Electronic Design

Bias Temperature Instability (BTI) causes significant threshold voltage shift in MOSFET using Hafnium-dioxide (HfO2) High-k dielectric material. Negative BTI and Positive BTI are two types of BTI effects observed in p-channel and n-channel MOSFET. BTI affects the stability and reliability of conventional six transistor (6T) SRAM design in nano-scale CMOS technology. Eight transistor (8T) and Te...

متن کامل

Comparative Analysis of Sram Cell Designs in Nano-scale Technology

Bias Temperature Instability (BTI) is a major reliability issue in Nano-Scale CMOS circuits. BTI effect results in the threshold voltage increase of MOS devices over time. Given the Process, Voltage, and Temperature (PVT) dependence of BTI effect, and the significant amount of PVT variations in Nano-scale CMOS, we propose a method of combining the effects of PVT variations and the BTI effect fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010